
Application of Grid Computing In Video
Rendering

Dr.C.Jeyabharathi

Arulmigu Palaniandavar Arts College for Women, Palani

Abstract— In most organizations, there are large amounts of
underutilized computing resources. Most desktop machines
are used less than 5 percent of the time. In some organizations,
even the server machines can often be relatively idle. Grid
computing provides a framework for exploiting these
underutilized resources and thus has the possibility of
substantially increasing the efficiency of resource usage. The
processing resources are not the only ones that may be
underutilized. Often, machines may have enormous unused
disk drive capacity. Grid computing, more specifically, a “data
Grid”, can be used to aggregate this unused storage into a
much larger virtual data store, possibly configured to achieve
improved performance and reliability over that of any single
machine. In this paper features of Grid Computing
technology, and use video conversion and rendering
applications to demonstrate this technology’s effectiveness and
high performance are discussed.

Keywords— Video rendering, Grid Computing, Resource
Discovery, Peer-to-Peer

I. INTRODUCTION

The amount of videos and movies being produced is
increasing rapidly. Rendering video images are complex
and enhancing raw images into enhanced images is time
consuming. Thus much more time is required to generate
enhanced images today. If there is some way in which
multiple computers could be used to generate the good
quality images in parallel the time required would be
reduced significantly. Grid computing paradigm is the
correct choice to connect multiple computers through which
required resources are available. A grid is basically a cluster
of individual computers, geographically distributed,
connected together to perform a few tasks in parallel. The
best candidates for grid computing are applications which
can be divided into tasks that can be computed in parallel,
independent of any other task’s result. Video rendering is
one such suitable application.

Video Rendering is a time consuming task when using a
single machine. The same task can be completed in much
lesser time by using multiple computers. Here, the concept
of a cluster of interconnected computers among which the
rendering jobs are distributed. However, one of the major
issues of a cluster is scalability. Keeping thousands of
computers at the same location is not feasible. Going a step
further, a grid of interconnected computers is considered.
This grid is basically an infrastructure with interconnected
nodes which are geographically distributed. This
framework consists of a portal which contains the ftp server
along with the load sharing facility. To the portal are
connected individual nodes which contain their own sub

nodes. Each node along with its sub nodes appear as one
virtual node to the portal. The client uploads the frames to
the ftp server. The load sharing facility assigns video
rendering jobs to the individual nodes connected to the
portal. Once these frames are rendered, they are uploaded
back to the FTP server from where the client can download
the rendered images. Grid-based computer animation
rendering and scheduling divisible loads in the dynamic
heterogeneous grid environment are the important tasks in
multimedia environment.

II. GRID RESOURCE DISCOVERY

Resources on grid systems are widely distributed and
heterogeneous in comparison to traditional and cluster
systems. Resource discovery is a key grid management tool
for extraction of resource information in a grid environment.
Among various Resource Discovery techniques,
Centralized systems, Hierarchical system and Peer-to-Peer
systems are familiar in Grid Resource Discovery.

The grid resource discovery using centralized systems [1]
provide grid middleware developers an easy to use interface
to manage grid resources. They keep grid resource
information by using centralized databases. In a large scale
grid environment, the centralization of the service may
easily create bottlenecks on the central servers. The
bottleneck problem may arise both because of frequent
resource updates or a large number of query requests
waiting to be processed. The centralization causes another
important problem in dynamic grids as being a single point
of failure. In some approaches, the idea of replication of
central servers is depicted in order to eliminate single point
of failure. But replication of servers in a large scale
dynamic grid may be very expensive in terms of
communication costs. Most of these systems do not support
dynamic-attribute queries because the update of dynamic
resource attributes are held in discrete intervals.

The hierarchical systems [1] based grid resource
discovery algorithms provide a more scalable platform than
the centralized ones and still provide a simple user interface
to manage grid resources. In a large scale grid environment,
the hierarchical topology of the service decreases the
probability of bottleneck problem. But single point of
failure problem still exists since failure of one of the master
servers in the system may cause a large part of the nodes
becoming invisible to the queries.

The Peer-to-Peer paradigm [2] is based on the principle
that every component of the system has the same
responsibilities acting simultaneously as a client and a
server, as opposed to the traditional client-server model.
P2P systems are divided into two main categories based on

C.Jeyabharathi / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (5) , 2017,556-560

www.ijcsit.com 556

ISSN:0975-9646

the connection protocol they employ and the way, peers are
organized structured and unstructured. Several hybrid
approaches have been proposed to overcome the drawbacks
of the two main approaches while retaining their benefits.

In unstructured systems [2, 3] each peer is randomly
connected to a fixed number of other peers and there is no
information about the location of files. There is neither a
centralized directory nor any control over the network
topology or resource placement. When a new peer joins the
P2P network, it forms connections with other peers freely.
Generally, unstructured overlays have loose guarantees for
resource discovery, and it is possible that a file is not found
though it exists in the network.

Structured P2P systems [2] employ a rigid structure to
interconnect the peers and to organize the file indices.
Structured P2P systems are equipped with a distributed
indexing service which is based on hashing, and is known
as Distributed Hash Table (DHT). Peers and files are
mapped, usually through the same hash function, to a key
space. Most structured P2P systems support naturally exact
match queries in O(logN) hops, where N is the size of the
key space, and range queries. However they do not support
directly keyword searches which constitute the core of
queries in real P2P systems. Chord, Can, Pastry and
Tapestry are DHT based protocols which are the hot
research topics of the current era.

In this paper an application for video rendering is created
in VC++ and tested in online. The nodes are manually
seleted for testing since there are a limited number of nodes
in our Computer Labs. But when it is implemented in real
Grid environment, the P2P resource discovery algorithms
such as FZ-Chord [4] and Geo-Chord [5] will efficiently
find the avilable node and perform video rendering easily.

III. APPLICATION OF GRID COMPUTING IN VIDEO

RENDERING

The recent popular computing technique called grid
computing is used in video conversion and negative images
into positive image conversion. This paper demonstrates
effectiveness of this technology and its high performance.

In this paper, an application for video rendering is
developed and tested in real time environment. In this
software all the different grid members are arranged
according to a specific topology. Two categories of nodes
are employed in this application namely Head node and
Child node. The node which initiates the work and which
needs the resources from other nodes are treated as Head
node. Child node supplies resources and both Head and
Children nodes which are connected in Grid together
complete the given job. The node power of every node will
depend on the number of direct connections it has. The
client will submit a job to the root node. According to the
number of child connections it has, the job will be splited
equally among each of these child nodes. Now each of
these child nodes will themselves split the job they have
received among their children.

To test the project in real-time environment, the
following platform is used.

 OS: Windows XP SP3
 IDE: Visual Studio 6.0

 Programming Language: Visual C++ 6.0
 Runtime Library: Advanced C 8.0
 Grid SDK: GIPC (Grid Image Processing Class)

GIPC uses state-of-the art technology. The GIPC class
uses Windows Server to centralize actual grid. The
application can be run on any computer that is connected
with Internet, GIPC automatically detects the server and
connects it with the node. It uses combination of HTTP,
FTP & SFTP protocols dynamically and there is no need to
configure the IP Address for each node. The GIPC has the
facility to use mobile ad-hoc network that enables the
application to deal with dynamic IP addresses, so the
number of systems can be connected all over the world.

Harnessing distributed computing resources to create a
so-called render farm has therefore been a solution for
video makers to handle their time consuming rendering
tasks. A render farm is a cluster of interconnected
computers which are used for rendering computer generated
imagery. There are two types of rendering methods:
network rendering and distributed (split-frame) rendering.
In network rendering, the images can be rendered in parallel,
as each frame can be calculated independently of the others.
In that case, the main communication between processors is
used for uploading the initial models and textures and
downloading the finished images. In distributed (split-frame)
rendering, each frame is divided into tiles which are
rendered in parallel.

The rendering time can be further reduced by having
more computers in a cluster. However, keeping hundreds of
computers in the same location requires a significant
physical space. This limitation can be removed by linking
up clusters of computers across different areas. This
solution has brought up a new paradigm of computing
called Grid computing. Computational Grid (or just Grid)
can be defined as an infrastructure with interconnected
nodes of resources. A node is an access point of
communication or computation. The resources could be
databases, application servers, networks and storage devices.
The function of a Grid is to enable sharing of
geographically distributed heterogeneous resources between
interconnected nodes. Grid has helped many researchers
and institutions in their visualization tasks such as
earthquake simulation [6], visualizing speed of pollution for
determining evacuation strategies [7], molecules modeling
[8], volumetric image processing [9] and real time
visualization of multi-physics simulation [10].

IV. REAL TIME IMPLEMENTATION

Video rendering application software is developed in
VC++ and tested in real time. For testing four different
nodes connected in internet are selected. Among four
systems, one is taken as Grid Head and the remaining three
nodes belong to Grid node type category. Two different
types of processes can be done in the following manner.

1. Conversion of Raw Image into Enhanced Image
2. Conversion of Negative Image into Positive Image

Fig. 1 shows the mode selection window which contains
two options namely Grid Head and Grid Node. One of the
options may be selected according to our requirement.

C.Jeyabharathi / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (5) , 2017,556-560

www.ijcsit.com 557

Fig. 1 Grid Mode Selection

Fig. 2 Grid Head Window

The process of Grid Head selection and its corresponding
execution environment is given in detail in Fig. 2. In this
window, Grid Head is registered after getting proper
authentication. After that Grid units in which we want to
run our job should be selected. Then the connect button
may be selected to have connection with the internet server.
After a few seconds, Grid Head will be connected to
network and the job can be completed easily.

 Next to Grid Head selection process is Grid node
selection process which is given in Fig.3 Here a number of
Grid units must be connected to the internet through its
nodeID. This number depends on the number of Grid units
selected in Grid Head selection process and the number of
Grid nodes available. Finally, after connecting all required
grid nodes to the network the conversion process can be
started based on the resource availability in Grid nodes. The
job is executed in parallel (ie) images are enhanced
simultaneously in all Grid units and the processing time and
enhanced images are viewed as output.

Fig. 3 Grid Node Window

The first process is executed in a single Grid node (ie,
Grid Head) and its job completion time is noted. And the
same job is executed in two Grid units (1 Grid Head + 1
Grid node), three Grid units (1 Grid Head + 2 Grid nodes)
and four Grid units (1 Grid Head + 3 Grid nodes). The
results are depicted in Table 1.

TABLE 1
RENDERING TIME FOR RAW IMAGE INTO ENHANCED IMAGE

CONVERSION
No. of

Raw
Images

Grid
Units

Rendering
Time (ms)

50

4 6741
3 8338
2 13074
1 25580

100

4 11406
3 15216
2 22804
1 45510

Similarly the second job is also executed in a single Grid

node (ie, Grid Head) and its job completion time is noted.
And the same job is executed in two Grid units (1 Grid
Head + 1 Grid node), three Grid units (1 Grid Head + 2
Grid nodes) and four Grid units (1 Grid Head + 3 Grid
nodes). The results are depicted in the Table 2.

TABLE 2

RENDERING TIME FOR NEGATIVE IMAGE INTO POSITIVE IMAGE

CONVERSION
No. of

Negative
Images

Grid
Units

Rendering
Time (ms)

50

4 6712
3 8284
2 12979
1 25528

100

4 11375
3 15166
2 22750
1 45500

Here, the sample input and output images are given for

easy understanding. Figures shown (Fig. 4 to Fig. 9) in left
side column are input images and right side column are
enhanced images.

Fig. 4 Raw Image1 and Enhanced Image1

C.Jeyabharathi / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (5) , 2017,556-560

www.ijcsit.com 558

Fig. 5 Raw Image2 and Enhanced Image2

Fig. 6 Raw Image3 and Enhanced Image3

Fig. 7 Negative Image1and Positive Image1

Fig. 8 Negative Image2 and Positive Image2

Fig. 9 Negative image3 and Positive image3

The following list explains the details of the Internet

Server hired in the application and the features it provide
for implementing the above mentioned conversions.

 IBM/Super/HP DL 160 G8 Series
 1 X Intel Hexa Core Xeon Processor E5-2620
 15 M Cache, 2.0 GHz, 7.2 GT/s Intel QPI), 2x

Gigabit Ethernet Card
 6 Cores, 12 Threads
 Integrated SAS RAID 0, 1, 5
 8 GB Fully Buffered DDR3 ECC Memory
 2 X 1 TB SATA, 7200 RPM HDD
 2000 GB Monthly Data Transfer
 FREE Set Up!! , 5 IP Addresses
 24x7 Technical Support on Phone/Email/Chat
 Free Remote Reboot, Complete Remote Access
 Tier 3 Data Center in Delhi NCR

V. CONCLUSION

Grid computing plays a vital role in almost all areas of
recent applications. In this paper, a new application is
developed using Grid computing for video rendering. Image
enhancement process and negative image into positive
image conversion processes are tested in this application.
Real-time execution of this software in network
environment and corresponding results are given in detail.

REFERENCES

[1] Deniz Cokuslu, Kayhan Erciyes, Abdelkader Hameurlain,
“Grid Resource Discovery Based on Centralized and
Hierarchical Architectures”, International Journal for
Infonomics (IJI), Volume 3, Issue 1, March 2010 Copyright ©
2010, Infonomics Society 227.

[2] P. Trunfio, D.Talia, C. Papadakis , P. Fragopoulou, M.
Mordacchini , M. Pennanen, K. Popov, V.Vlassov, S. Haridi ,
“Peer-to-Peer Resource Discovery in Grids: Models and
Systems”, This research work is carried out under the FP6
Network of Excellence CoreGRID funded by the European
Commission (Contract IST-2002-004265). Preprint submitted
to Elsevier Science ,3 August 2006.

[3] Stefan Schmid and Roger Wattenhofer, “Structuring
Unstructured Peer-to-Peer”, Networks Computer Engineering
and Networks Laboratory, ETH Zurich, 8092 Zurich,
Switzerland.

[4] A.Pethalakshmi and C.Jeyabharathi, “Parallel Search in
Structured Chord Protocol for Quick Resource Discovery in

C.Jeyabharathi / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (5) , 2017,556-560

www.ijcsit.com 559

Grid Computing”, International Journal of Advanced Research
in Computer Science and Software Engineering, Volume 3,
Issue 12, December 2013.

[5] A.Pethalakshmi and C.Jeyabharathi, “GEO-Chord:
Geographical Location Based Chord Protocol in Grid
Computing”, International Journal of Computer Applications,
Volume 94 – No 3, May 2014.

[6] Aeschlimann, M., Dinda, P., Kallivokas, L., LOpez, J.,
Lowekamp, B. and O’hallaron, D. , “Preliminary Report On
The Design of A Framework For Distributed Visualization”, In
Proceedings of The International Conference on Parallel and
Distributed Processing Techniques and Applications, 1833-
1839, 1999.

[7] Brodlie, K., Duce, D., Gallop, J., Sagar, M., Walton, J. and
Wood, J., “Visualization in Grid Computing Environments”, In
proceedings of IEEE Visualization, 155-162, 2004.

[8] Bilbao-Castro, J. R., Marabini, R., Carazo, J. M., Garcia, I. and
Fernandez. J. J., “The Potential of Grid Computing in Three-
Dimensional Electron Microscopy”, Parallel Processing Letters,
World Scientific Publishing Company, 14, 2, 151-162, 2004.

[9] Muraki, S., Lum, Eric. B., Ma, K. L., Ogata, M. and Liu, X. Z.,
“A PC cluster system for simultaneous interactive volumetric
modeling and visualization”, In Proceedings of IEEE
Symposium on Parallel and Large-Data Visualization and
Graphics, 95-102, 2003.

[10] Suzuki, Y., Kazunori, S., Matsumoto, N. and Hazama, O,
“Visualization Systems on the Information-Technology-Based
Laboratory”, IEEE Computer Graphics and Applications, 23, 2,
32-39, 2003.

C.Jeyabharathi / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (5) , 2017,556-560

www.ijcsit.com 560

